NAG Toolbox for MATLAB

f01ct

1 Purpose

f01ct adds two double matrices, each one optionally transposed and multiplied by a scalar.

2 Syntax

3 Description

f01ct performs one of the operations

$$C := \alpha A + \beta B$$
,

$$C := \alpha A^{\mathrm{T}} + \beta B,$$

$$C := \alpha A + \beta B^{\mathrm{T}}$$
 or

$$C := \alpha A^{\mathrm{T}} + \beta B^{\mathrm{T}}.$$

where A, B and C are matrices, and α and β are scalars. For efficiency, the function contains special code for the cases when one or both of α , β is equal to zero, unity or minus unity. The matrices, or their transposes, must be compatible for addition. A and B are either m by n or n by m matrices, depending on whether they are to be transposed before addition. C is an m by n matrix.

4 References

None.

5 Parameters

5.1 Compulsory Input Parameters

- 1: transa string
- 2: transb string

transa and **transb** must specify whether or not the matrix A and the matrix B, respectively, are to be transposed before addition.

transa or transb = 'N'

The matrix will not be transposed.

transa or transb = 'T' or 'C'

The matrix will be transposed.

Constraint: transa and transb must be one of 'N', 'T' or 'C'.

3: m - int32 scalar

m, the number of rows of the matrices A and B or their transposes. Also the number of rows of the matrix C.

Constraint: $\mathbf{m} \geq 0$.

[NP3663/21] f01ct.1

f01ct NAG Toolbox Manual

4: n - int32 scalar

n, the number of columns of the matrices A and B or their transposes. Also the number of columns of the matrix C.

Constraint: $\mathbf{n} \geq 0$.

5: alpha – double scalar

The scalar α , by which matrix A is multiplied before addition.

6: a(lda,*) - double array

The first dimension, Ida, of the array a must satisfy

```
if transa = 'N', lda \ge max(1, m); lda \ge max(1, n) otherwise.
```

The second dimension of the array must be at least $\max(1, \mathbf{n})$ and the leading m by n part of \mathbf{a} must contain the matrix A, if $\mathbf{transa} = 'N'$, and at least $\max(1, \mathbf{m})$ and the leading n by m part of \mathbf{a} must contain the matrix A, otherwise

If $\alpha = 0.0$, the elements of array **a** need not be assigned.

7: beta – double scalar

The scalar β , by which matrix B is multiplied before addition.

8: b(ldb,*) - double array

The first dimension, ldb, of the array b must satisfy

```
if transb = 'N', ldb \ge max(1, m); ldb \ge max(1, n) otherwise.
```

The second dimension of the array must be at least $\max(1, \mathbf{n})$ and the leading m by n part of \mathbf{b} must contain the matrix B, if $\mathbf{transb} = 'N'$, and at least $\max(1, \mathbf{m})$ and the leading n by m part of \mathbf{b} must contain the matrix B, otherwise

If $\beta = 0.0$, the elements of array **b** need not be assigned.

5.2 Optional Input Parameters

None.

5.3 Input Parameters Omitted from the MATLAB Interface

lda, ldb, ldc

5.4 Output Parameters

1: c(ldc,*) - double array

The first dimension of the array \mathbf{c} must be at least $\max(1, \mathbf{m})$

The second dimension of the array must be at least $max(1, \mathbf{n})$

The elements of the m by n matrix C.

2: ifail – int32 scalar

0 unless the function detects an error (see Section 6).

f01ct.2 [NP3663/21]

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1

On entry, one or both of transa or transb is not equal to 'N', 'T' or 'C'.

ifail = 2

On entry, one or both of \mathbf{m} or \mathbf{n} is less than 0.

ifail = 3

On entry, $\mathbf{lda} < \max(1, P)$, where $P = \mathbf{m}$ if $\mathbf{transa} = 'N'$, and $P = \mathbf{n}$ otherwise.

ifail = 4

On entry, $\mathbf{ldb} < \max(1, P)$, where $P = \mathbf{m}$ if $\mathbf{transb} = 'N'$, and $P = \mathbf{n}$ otherwise.

ifail = 5

On entry, $\mathbf{ldc} < \max(1, \mathbf{m})$.

7 Accuracy

The results returned by f01ct are accurate to machine precision.

8 Further Comments

The time taken for a call of f01ct varies with **m**, **n** and the values of α and β . The function is quickest if either or both of α and β are equal to zero, or plus or minus unity.

9 Example

```
transa = 'N';
transb = 'N';
m = int32(4);
n = int32(3);
alpha = 1;
a = [1, 2.5, 3;
     -2, 2, -1.5;
3.5, 2, -2.5;
1.5, -2, 1];
beta = 1;
b = [2, -2.5, -2;
1, 1, 1;
-1.5, 2.5, -2.5;
      2, -2, 1];
[c, ifail] = f01ct(transa, transb, m, n, alpha, a, beta, b)
c =
    3.0000
                      0
                            1.0000
    -1.0000
              3.0000
                           -0.5000
    2.0000
               4.5000
                           -5.0000
               -4.0000
                            2.0000
    3.5000
ifail =
             0
```

[NP3663/21] f01ct.3 (last)